Hofp代数概念首次是被引进到代数拓扑理论,而近些年将其发展并应用于数学的其他领域,比如李群,代数群以及Galois理论。本书修订并译自日语,是学习Hopf代数基本理论的入门书籍。在介绍和讨论了上代数、双代数以及Hofp代数以后,接着讲述Hopf代数积分的独特性和存在性的Sullivan证明以及双模基本结构理论。Hopf代数和群之间的对偶性引入仿射K-群的定义,通过Hopf代数理论的应用讨论了因子群的结构,可分解群的结构和完全可约群。最后,简单介绍了不可分域的Galois理论。目次:模型与代数;Hopf代数;Hopf代数与群表示论;代数群中的应用;域论中的应用。
读者对象:本书适用于代数领域的研究生以及科研人员。
Preface
Notation
1 Modules and algebras
1.Modules
2.Algebras over a commutative ring
3.Lie algebras
4.Semi-simple algebras
5.Finitely generated commutative algebras
2 Hopf algebras
1.Bialgcbras and Hopf algebras
2.The representative bialgebras of semigroups
3.The duality between algebras and coalgebras
4.Irreducible bialgebras
5.Irreducible cocommutative biaIgebras
3 Hopr algebras and relnmmamtlom of group
1.Comodules and bimodules
2.Bimodules and biaIgebms
3.Integrals for Hopf algebras
4.The duality theorem
4 ApplimlJons to algebraic groups
1.Affme k-varieties
2.Atone k-groups
3.Lie algebras of affme algebraic k-groups
4.Factor groups
5.Unipotent groups and solvable groups
6.Completely reducible groups
5 Applications to field theory
1.K/k—bialgebras
2.Jacobson's theorem
3.Modular extensions
Appendix:Categories and functors
A.1 Categories
A.2 Functors
A.3 Adjoint functors
A.4 Representable functors
A.5 φ-groups andφ-cogroups
References
Index