《微积分·上(英文版)》是为响应东南大学国际化需求,根据国家教育部非数学专业数学基础课教学指导分委员会制定的《工科类本科数学基础课程教学基本要求》,并结合东南大学多年教学改革实践经验编写的面向本科一年级学生开设的高等数学(微积分)课程的全英文教材。全书分为上、下两册,主要包括极限、一元函数微分学、一元函数积分学、常微分方程、级数、向量代数与空间解析几何、多元函数微分学、多元函数积分学八个章节。
《微积分·上(英文版)》中的内容是工科学生必备大学数学知识,可作为高等理工科院校非数学类专业本科生学习高等数学(微积分)的英文教材,也可供其他专业学生选用和相关科技工作者参考。
Chapter 1 Limits
1.1 Functions
1.1.1 Mapping
1.1.2 Function of Single Variable
1.1.3 Elementa ry Functions and Hyperbolic Functions
Exercise
1.2 The Concept ot Ljmits and its Properties
1.2.1 Limits of Sequence
1.2.2 Limits of Functions
1.2.3 Properties of Limits
Exercise
1.3 Rules for Finding Limits
1.3.1 Operation on Limits
1.3.2 Limits Theorem
1.3.3 Two Important Special Limits
Exercise
1.4 Infinitesimal and Infinite
1.4.1 Infinitesimal
1.4.2 Infinite
1.4.3 Compa rison between Infinitesimal
Exercise
1.5 Continuous Function
1.5.1 Continuity
1.5.2 Continuity of Elementa ry Functions
1.5.3 Discontinuity
1.5.4 Theo rems about Continuous Functions on a Closed InfervaI
Exercise
Chapter Review Exercise
Chapter 2 Differentiation
2.1 The Derivative
2.1.1 Two Prob Lems with one Theme
2.1.2 Definition of the Derivative
2.1.3 Geometric Interpretation of the De rivative
2.1.4 The Relationship between DifferentiabiIity and Continuity
Exercise
2.2 Finding Rules for Derivative
2,2.1 Derivative of Basic Elementa ry Functions
2.2.2 Derivative of Arithmetic CombinQtion
2.2.3 The Derivative Rule for Inverses
2.2.4 Derivative 04 Composition
2.2.5 Implicit DitferentiatIon
2.2.6 Parametric Dlfferentjalion
2.2.7 Related Rates Of Change
Exercise
2.3 Higher-Order Derivatives
Exercise
2.4 Differentials
2.4.1 Definition of Differentials
2.4.2 Differential Rules
2.4.3 Application of Diffe rentials in Approximation
Exercise
2.5 The Mean Value Theorem
2.5.1 Fermat’s Theorem
2.5.2 Rolle’s Theorem
2.5.3 Lagrange’s Theorem
2.5.4 Cauchy’s Theorem
Exercise
……
Chapter 3 The Integration
Chapter 4 Differential Equations
Solutions to Selected Problem