生物炭是一种富碳产品,由生物质(如木材、粪便或农作物残余物)在密闭容器中(缺氧条件)加热制得。生物炭可以通过多种方式改善农业和环境,其在土壤中的稳定性和优异的养分固持能力使其成为理想的土壤改良剂。此外,生物炭的固存能力与生物质可持续生产相结合可减少大气中二氧化碳排放,对减缓气候变化、早日实现碳达峰和碳中和产生重要影响。此外,生物炭制备过程中释放的气体还可以作为生物能源加以利用。本书是向学生、研究人员和非专业人士介绍生物炭的一本入门级书籍,可为所有想要对生物炭有更深入了解的读者提供全面的参考。本书的亮点是提出了生物炭科学前沿的新见解,阐述了生物炭科学研究和应用的新概念,分析了生物炭的知识缺口,展示了生物炭的复杂性,并描述了生物炭的科学发展和政策图景,该书可为生物炭在环境治理中的进一步研究和应用提供发展思路。
从基本原理到产业化应用,全面阐述生物炭在环境治理中的应用。
序
在《生物炭在环境治理中的应用:原理、技术与实践》撰写过程中,生物炭一词即使在专门从事生物能源开发、废物管理、场地修复、减缓气候变化或土壤肥力研究的科学界也鲜为人知。但是,过去5 年,这种情况发生了变化,生物炭的科学研究显著增加,同时在零售商店也发现了第一批商业生物炭产品。本书不仅介绍了生物炭的特性及其对农
业和环境影响的最新进展,而且制定了生物炭科学研究和应用的基本准则和框架。
本书是向学生、研究人员和非专业人士介绍生物炭的一本入门级书籍,是为所有想要对生物炭有更深了解的读者提供参考的一本全面的教科书。同时,本书的亮点是提出了生物炭科学前沿的新见解,阐述了生物炭科学研究和应用的新概念,分析了生物炭的知识缺口及未来研究的需求,可为土地使用规划人员、业主、培训人员、政策制定人员、监管机构、项目或业务开发商提供有用的基本信息。
尽管生物炭具有悠久的历史,但对于许多人来说生物炭仍是一个相对较新的领域和主题,因此生物炭的利益相关群体对其更有兴趣。许多国家成立了区域性和地方性组织,对生物炭感兴趣的科学家、工业项目开发商和政策制定人员组成的国际生物炭动议组织(IBI)在国际网络的支持下促进了人们在生物炭领域的交流和生物炭的可持续发展。这些
组织建立了将生物炭商业化的高级框架,例如,制定生物炭的安全标准,以及在受到社会和经济限制的同时如何可持续利用生物炭来解决环境问题。因此,本书有利于严谨的科学探究,并有希望推动生物炭的可持续应用发展。本书展示了生物炭的复杂性,涵盖了详细的科学、发展和政策图景,可为进一步的研究及其实际应用提供发展思路。
本书主要分为5 个部分:①生物炭研究、制备与使用的历史和基础;②生物炭的基本理化性质及分类;③生物炭在环境中的稳定性、变化和迁移;④生物炭对植物生产力和环境过程的影响,包括土壤生物、养分和碳的迁移转化、温室气体排放、土壤水及污染物的动力学研究(如有机污染物、重金属、除草剂);⑤施用生物炭之前对其含量、在商业产品中的使用,以及对更广泛的生物炭系统、温室气体核算、认证、经济和商业化进行评估。
感谢众多审稿人花费了大量时间对本书的内容给出的专业意见,这保证了本书的高科学水准。尤其感谢Samuel Abiven、Teri Angst、Elizabeth Baggs、Julia Berazneva、Luke Beesley、Catherine Brewer、Anthony Bridgwater、Sander Bruun、Marta Camps-Arbestain、Chih-Hsin Cheng、Tim Clough、Gerard Cornelissen、Annette Cowie、Andrew Crane-Droesch、Andrew Cross、David Crowley、Thomas DeLuca、Xavier Domene、John Field、Elizabeth Fisher、Yves Gelinas、Brent Gloy、Sarah Hale、Jim Hammond、Christopher Higgins、Philippe Hinsinger、Andreas Hornung、Michael Hedley、Rachel Hestrin、William Hockaday、Joeri Kaal、Claudia Kammann、Markus Kleber、Heike Knicker、David Laird、Jens Leifeld、Isabel Lima、Min Malla、Caroline Masiello、Neil Mattson、Mark Milstein、Joseph Pignatello、Debbie Reed、Cornelia Rumpel、Klaus Schmidt-Rohr、Michael Sesko、Simon Shackley、Joff Silberg、Bhupinder Pal Singh、Dawit Solomon、Magnus Sparrevik、Kurt Spokas、Christoph Steiner、Janice Thies、Wolfgang Wilcke、William Woods、Dongke Zhang、Lukas Van Zwieten 和几位匿名审稿人。同时,感谢Kelly Hanley 对本书进行了校对,并对几个章节的格式进行了修改。
衷心感谢Earthscan Publications Ltd. 的编辑Tim Hardwick,在他的专业指导下,本书得以顺利出版!感谢Rob Brown 和Ashley Wright 将各个章节整理成型!感谢欧盟的COST 行动计划(欧洲科技合作计划)所提供的资金支持。
最后,也是最重要的,感谢家人和朋友耐心理解我们筹备这本书的狂热心情和深夜写作的辛苦,感谢他们的全力支持,没有他们的支持我们不可能完成这本书。
Johannes Lehmann
Stephen Joseph
2014 年5 月
前言
气候危机日益严峻。人类每年向大气排放430 亿吨CO2,比10 年前增加了25%。科学家们已经计算出地球的碳收支,并得出结论:如果人们希望有75% 的可能将全球变暖幅度控制在2℃以内,那么在21 世纪上半叶只能排放10000 亿吨CO2。然而,由于碳排放量增长速度过快,直至2013 年已经达到了上述预算的近40%。按照这个增长速度,到2028 年就会超出预算的排放量。因此,解决气候危机的时间有限,而这10 余年尤其关键。再过16 个月,也就是2015 年12 月,人类将在巴黎面临一个严峻的挑战制定一项能够应对气候危机的全球条约。鉴于之前在哥本哈根的失败经历,许多人置疑这次会议是否能成功。无论如何,许多科学家都认为,如果制定这项全球条约的时间太晚,就无法避免严重的气候破坏。因为地球正在变暖,且变暖速度与政府间气候变化专门委员会预测的最快变暖速度一致。然而,随着各国对能源的需求日益增加,减少化石燃料的燃烧已成为一项极其艰巨的任务。此外,解决气候危机不能以牺牲粮食或能源安全为代价。因此,21 世纪需要提出能够立即解决以上几个主要问题的方案,而且这些方案必须能够迅速实施,并能在真正意义上产生显著的影响。
我相信,本书可提供实现未来人类环境最重要的一项计划所需的基本知识。生物炭技术为解决以上问题提供了非常独特的解决方案,因为它能解决粮食安全问题、能源危机和气候问题。生物炭既是一个非常古老的概念,也是一个新概念。例如,印第安人使用生物炭后形成了亚马孙盆地的亚马孙流域黑土,这些黑土在形成1000 年后仍然比周围的土地更肥沃。尽管生物炭有很多好处,但现在很少有农民考虑利用生物炭改良土地。更糟糕的是,关于气候变化的政治辩论仍在继续,而那些本可以从中受益的行业在控制气候变化方面只迈出了微小的第一步。
生物炭技术的关键是制炭,这涉及在无氧条件下加热有机物质。生物炭技术不是一种单一的技术,可以通过多种技术改变生物炭的性质,以实现生物炭的特定用途。因此,本书介绍了一系列创新产品和成果,它们种类繁多且有多种有益用途。此外,本书本质上是关于生物炭如何做的手册,因此也对生物炭在生物、技术、经济、政治和社会方面的
影响进行了专业分析。在制炭过程中有许多其他重要的产品,包括可用来发电的合成气体、柴油的替代品等。因此,本书也介绍了制炭过程中产生的其他副产品。
生物炭最重要的一个方面是它可以大规模应用。如果将世界上每年产生的所有林业和农业废弃物转化为生物炭并储存起来,就可以从大气中去除大约40 亿吨CO2,这使得生物炭成为最有效的大气清洁技术之一。事实上,生物炭技术是原始地球挑战的决赛技术之一。原始地球挑战是世界上最富有的奖项,旨在鼓励开发每年能够从大气中吸收
10 亿吨甚至更多碳的技术的人或团队。
生物炭技术应用的最有价值的用途之一是大大提高了农业的经济效率、作物产量,以及减缓了植物吸收的碳返回大气的速度。因此,生物炭提供了多样化的清洁能源,使得单位面积土地的粮食产量提高,并有可能实现气候安全。简单来说,这就是生物炭革命带给我们的机遇。本书所描述的生物炭技术在全球范围内都具有潜在的适用性。我相信,粮食生产和许多其他形式的农业、畜牧业、林业,甚至人类粪便的处理,都将因本书中描写的生物炭技术而发生巨大变化,并且其影响是迅速且显著的。同时,气候危机很可能也是推动生物炭技术发展的因素,至少在初期是这样的。
每年大气中约有8% 的CO2 被植物吸收。如果植物捕获的一小部分碳能够被高温分解并转化为生物炭,人类的前景将会变得光明许多,因为这将为人类社会转型成为低排放经济社会争取时间。本书对生物炭进行了系统评估,因此,本书将为未来全球可持续发展奠定基石。我坚信,本书与Rachel Carson 的《寂静的春天》一样重要,在政治上也有可能与Al Gore 的《难以忽视的真相》同等重要。如果本书拥有足够广泛的读者群体,它将永远改变我们的世界,而且会让我们的世界变得更好。
Tim Flannery
2014 年8 月
原著者推荐序
In the years since 2015 when Biochar for Environmental Management: Science, Technology
and Implementation was published, research activity continued to deepen, especially in Asia.
Scientific Journals on biochar were founded, protocols for carbon credits were developed for
the voluntary market as well as by IPCC for national greenhouse gas accounting. Industry is
developing products and technology that has started to gain more customers. Yet, adoption is
still in an exploratory phase compared with the global potential that biochar systems could reach.
This book and the suite of experts share fundamental insights into the production and application
of biochar. Key to ensuring that biochar fulfills its goals as a sustainable practice is to recognize
biochar as a systems approach rather than only a product. The authors lay the foundation to such
knowledge and point to ways where fundamental insights must still be improved and where
applied technology is needed. We hope that this translation makes the information accessible to a
broader readership to ensure sustainable biochar practices to be developed.
Johannes Lehmann
Stephen Joseph
译者序
随着社会经济的不断发展,人类活动导致的生态环境问题日益突出。为积极应对全球气候变化,十四五期间我国提出了碳达峰、碳中和的双碳战略目标。生物炭是一种将生物质在高温厌氧条件下热解制备的多孔性富碳物质,近年来在固碳减排、环境修复与土壤改良等方面日益受到广泛关注。生物炭技术是一种极具应用潜力的碳捕获、利用
与封存(Carbon Capture, Utilization and Storage,CCUS)技术,如何发挥其减污降碳协同增效的作用、实现全球生态环境安全与可持续发展已成为当前全世界科学家普遍关注和热议的焦点问题。2007 年,美国康奈尔大学Johannes Lehmann 教授在Nature 发表了题为A Handful of Carbon 的评述文章,之后全世界掀起了关于生物炭研究的热潮,很多国家和地区都成立了生物炭工程技术研究中心,同时创办了专门以生物炭命名的国际期刊Biochar。通过Web of Science 数据库文献统计发现,与生物炭研究相关的文献从2010 年的150 篇增加到2022 年的6000 余篇,充分体现了广大科研工作者对生物炭研究的关注。
2009 年,时任国际生物炭动议组织(IBI)主席、美国康奈尔大学Johannes Lehmann教授和澳大利亚新南威尔士大学Stephen Joseph 教授一起撰写了Biochar for Environmental Management: Science and Technology 一书,该书一经出版就受到了国内外广大生物炭研究领域相关人员的广泛关注和一致好评。2015 年,该书进行了第二版出版,书名为Biochar for Environmental Management: Science, Technology and Implementation。该书较全面地从生物炭的起源、制备方法、环境行为及其在环境修复与土壤改良方面的应用与实践等方面进行了阐述和总结,极大地推动了生物炭研究领域的发展。受东西方文化差异、专业词汇量和专业背景知识等因素的影响,许多读者在阅读原著时可能会存在理解上的偏差或翻译上的一些困惑,尤其是关于生物炭系统和生物炭的经
济评估等相关章节的内容,如果不具备一定的专业基础知识和词汇量,很难理解和掌握其中所要表达和传递的具体含义。基于以上背景,为了进一步拓展和扩大该书的读者群,让广大读者能更清晰、更深入地理解该书的精髓要义,更熟练地掌握生物炭技术的原理和方法,笔者下定决心将此书进行翻译,以期为进入生物炭研究领域的读者提供一本指导性的中文书籍,进一步拓展和助推生物炭技术的研究和应用。
在本书翻译过程中,译者尽量保留了原著的精髓,充分考虑了中英文语法结构和语言表达的差异,尽量做到浅显易懂。本书不仅可作为进入生物炭领域的初学者、研究人员和技术人员的参考书,也可作为高校本科生、研究生的教材,是一本内容全面、叙述详细、通俗易懂的关于生物炭技术的综合性书籍和教材。
本书涉及内容和章节较多,信息量较大,翻译过程历时两年多,翻译组付出了大量宝贵的时间和精力,在此过程中还得到了众多领域内专家学者的大力支持、帮助和指导,在此一并表示衷心的感谢!尽管经过了无数次的修改和校对,但受水平和时间限制,翻译过程中错漏之处在所难免,恳请广大读者批评指正。
王兵
2023 年8 月
Johannes Lehmann,美国康奈尔大学土壤生物地球化学和土壤养分管理专业教授,国际生物炭动议组织联合创始人兼主席,美国农业部和能源部生物质能研发委员会委员,Nutrient Cycling in Agroecosystems 主编。Stephen Joseph,澳大利亚新南威尔士大学材料科学与工程学院客座教授,国际生物炭动议组织联合创始人。<BR>王兵,男,汉族,1982年7月生,博士,贵州大学一流学科特聘教授(B类),硕士生导师,贵州省"千层次创新型人才,2012-2013年美国康奈尔大学访问学者,2016-2017年美国佛罗里达大学访问学者,主要从事生物炭的生物地球化学行为与环境效应、土壤重金属污染修复治理及固体废弃物资源化利用等方面的研究。近年来作为项目负责人先后主持了国家重点研发计划专题项目、国家自然科学基金面上项目、国家自然科学青年基金项目、贵州省农业科技攻关计划项目、贵州省国际科技合作计划项目、贵州省科学技术基金项目、中国科学院"西部之光人才培养计划项目、贵州省高层次留学人才创新创业择优资助项目等课题10余项。目前已在国内外相关学术刊物上发表学术论文60余篇,其中第一作者或通讯作者在Critical Reviews in Environmental Science and Technology、Science of the Total Environment、Chemosphere等环境领域SCI期刊发表论文20余篇,获得授权发明专利3项,2010年荣获中国科学院朱李月华优秀博士生奖,并担任中国矿物岩石地球化学学会终身会员、国家自然科学基金委员会同行评议专家及Journal of Hazardous Materials、Chemical Engineering Journal、Journal of Cleaner Production、Scientific Reports、Science of the Total Environment 、Chemosphere、Journal of Environmental Management等20余个环境领域国际著名刊物审稿人
第1 章 用于环境管理的生物炭 ·······································································.1
1.1 生物炭的定义 ·····················································································1
1.2 生物炭研究及其应用历史 ······································································3
1.3 生物炭系统 ························································································5
1.4 土壤改良 ···························································································7
1.5 缓解气候变化和减少养分流失 ································································7
1.6 废物处理 ···························································································8
1.7 能源生产 ···························································································8
1.8 生物炭研究的现状、发展和展望 ·····························································9
参考文献 ······························································································.10
第2 章 生物炭的传统用法 ·············································································13
2.1 引言 ······························································································.13
2.2 欧洲 ······························································································.16
2.2.1 新石器时代和青铜器时代 ··························································.16
2.2.2 中世纪厚熟表层土壤栽培 ··························································.17
2.2.3 蚂蚁地中海地区的传统施肥技术 ·······································.19
2.3 亚洲 ······························································································.21
2.3.1 中国古代稻田 ·········································································.21
2.3.2 东南亚婆罗洲 ······································································.22
2.3.3 日本 ·····················································································.23
2.4 澳大利亚和新西兰 ············································································.24
2.5 非洲 ······························································································.25
2.6 南美洲 ···························································································.26
2.6.1 巴西(Terra Preta deíndio) ··························································.26
2.6.2 秘鲁 ·····················································································.27
2.7 结论 ······························································································.28
参考文献 ······························································································.28
第3 章 生物炭制备的基本原理 ·······································································33
3.1 引言 ······························································································.33
3.2 木炭制备的历史和工艺 ······································································.34
3.3 生物质填料热解的基本概念 ································································.39
3.4 木炭的产量和性质 ············································································.45
3.5 结论与展望 ·····················································································.49
参考文献 ······························································································.49
第4 章 生物炭制备技术 ················································································55
4.1 引言 ······························································································.55
4.2 热化学转化技术 ···············································································.56
4.3 生物炭制备反应器的选择标准 ·····························································.57
4.4 反应器类型、运行方式和工艺参数 ·······················································.61
4.4.1 热化学反应器中的氧气含量 ·······················································.63
4.4.2 反应器类型(固定床反应器、移动床反应器、流化床反应器、
循环床反应器、烧蚀反应器、气流床反应器) ·······································.63
4.4.3 使用的粒度 ············································································.63
4.4.4 操作模式 ···············································································.64
4.5 加热方式 ································