《数学物理趣谈:从无穷小开始》重点介绍了现代物理中常用的一些数学方法,包括微积分、变分法、微分方程、微分几何等领域的基础知识。作者以深入浅出的解释、直观明白的图像、生动有趣的语言,使你初步了解这些基础的数学概念,以及与它们相关的物理应用实例。带领你追溯数学物理的源头,从趣味中体会数学之美,带你进入数学物理及与其发展紧密相关的理论物理的大门。
更多科学出版社服务,请扫码获取。
第1章 无穷小的魔术
“数学是关于无穷的科学。”——大数学家希尔伯特名言
1. 从微积分说起
有朋友对我说,简单的初等数学永远能记住,因为它对日常生活很有用处,比如算账什么的就需要。至于微积分嘛,早都还给老师去了,因为它与实际生活没有关系啊!微积分与我们日常生活真的无关吗?其实不然,看了下面这几个例子,也许你的看法就不一样了。
你去爬山时一定注意过山坡的形状,有的简单、有的复杂,或高或低、或平或陡。但无论何种形状,山坡的高度总是随着离山脚下出发点的距离而变化的。有的部分很陡,也就是说高度变化得很快;而另一些部分比较平坦,即高度变化得慢,或者几乎不变。如何来描述高度的这种变化呢?快还是慢,陡还是平?我们可以用一个叫“坡度”的数值来表示。坡度定义为高度的增加与你走过的水平距离的比值。比如,如果像图1.1(a)所示的简单形状,用初等数学中的简单几何知识就能描述,不就是几条直线构成的几个三角形和矩形吗?在这种情形下,坡度的计算也很简单,如图中所示,用高度除以距离即可得到。图1.1(a)中的山坡分成简单的3段:上坡、平地、下坡,在每一段中,坡度都将分别是一个常数。
数学中有一个更专业的词汇来描述上面例子中的山坡形状,那就是“函数”。函数是用来描述变量之间的关系的,比如说,在上面的例子中,山坡的高度y随着离出发点O的水平距离x而变化,也就是说,y是x的函数。这里,y是函数,x叫作自变量。函数和自变量的关系可以用像图1.1(a)中所画的类似曲线来描述,而刚才爬山例子中所说的“坡度”,也有一个数学术语:曲线的斜率。斜率表征了函数在某点的变化快慢,它的计算便需要用到微积分。
当然,如果山坡的形状很简单,并不需要用微积分来计算坡度,比如像图1.1(a)的情况,山坡的每一段都是直线,计算坡度时只需要用这一段山坡高度的变化Δy除以水平距离的变化Δx就行了。从图1.1(a)的图形来估计,第一段山路的坡度大约等于1;第二段山路中高度没有变化,坡度为0;第三段是很陡的下坡路,坡度是负数,绝对值大于1。
但是,如果山坡的形状比较复杂如图1.1(b)所示,坡度就不方便用初等数学来计算了。这时候,就需要用到微积分这个锐利的工具。
因此,可以粗略地说,微积分是用来研究函数是如何变化的。
图1.1 山坡形状及坡度计算
首先,它可以被用来计算函数变化的斜率,从而考察函数变化的快慢。当函数很复杂,是个任意形状的曲线时,斜率的计算也变得很复杂,这时候,微积分便被派来解决这种问题。
在日常生活中,复杂的函数形状比比皆是。由于我们的世界处于不断的变化和运动之中,一切皆变数,到处都是“变量”,几乎在每一个领域,都能见到使用各种曲线来描述经济的发展、公司的业绩、员工的增长、交通的繁忙 如何深入研究这些变化呢?答案就是微积分。
比如,图1.2所示的股票市场、温度变化、心电图等,这些曲线都可用微积分来分析。
让我们再回到山坡的例子,解释如何计算坡度。初等数学只能处理简单的函数,计算如同图1.1(a)所示的山坡形状的坡度。如果碰到变化多端的任意形状的函数,该如何计算斜率呢?比如,如何计算图1.1(b)所示的那种复杂山坡的坡度呢?
当然,我们仍然可以沿用图1.1(a)所示的方法,用高度Δy除以距离Δx来计算,但这时得到的数值只能算是某一段距离Δx中的平均坡度。如果我们改变计算所用的Δx的大小,平均坡度也将随之变化。例如,当我们要计算图1.1(c)中某一个点A附近的坡度,
图1.2 日常生活中的函数
可以采取如下步骤:从A点的x开始,首先增加到x+Δx1,如果y的改变为Δy1,便能算出第一个平均坡度P1=Δy1/Δx1。然后,逐次减小Δx1使之成为Δx2, Δx3, , Δxn,相应地得到y的增量:Δy2, Δy3, , Δyn,最后,分别计算相应的坡度P2, P3, , Pn。P1, P2, P3, , Pn是对应于x的一系列增量Δx1, Δx2, Δx3, , Δxn的平均坡度。如果要更为准确地反映某一“点A”的坡度,就必须将计算的范围,即Δx取得更小,更靠近这个“点A”。我们如此想象下去,Δx越来越小,那么Δy也会越来越小 最后得到的比值P=Δy/Δx便可以表示“点A”的坡度了。
上述段落中所描述的便是使用微积分来计算斜率的思想。微积分是“微分”和“积分”的统称。所谓微分的意思就是说,将自变量的变化Δx变得微小又微小,直到“无限小”,而观察函数y是如何变化的。一般来说,y的变化Δy也会是一个“无限小”的量。但人们关心的是这两个“无限小”量的比值,即上面例子中所描述的山坡在点A的坡度P,或在一般情形下称之为曲线在该点的斜率P。我们将这个值P叫作函数y对x在给定点的微分,也叫作y对x的导数。
“无穷小”或“无限小”,是一个有趣又有用的概念。如我们本章开头所引用的大数学家希尔伯特的名言所说的那样,数学就是研究“无穷”的科学。希尔伯特还说过:“无穷!再也没有其他问题如此深刻地打动过人类的心灵。”的确如此,“无穷大”和“无穷小”这两个神秘而又令人困惑的词与现代数学,进而与现代科学技术紧紧地联系在一起。它们深刻地影响了人类的精神,激励着人类的智力。“无穷小”在人类的科学技术舞台上变换表演出各种精湛绝美的魔术,也就是我们将要在本章看到的“无穷小”的魔术。
生活中经常碰到的需要求函数的导数的例子是计算运动物体的速度。比如我们开车出外旅游,汽车行驶的距离s便是时间t的函数,汽车的速度v就是距离随着时间的增长率。速度v是不停变化的,所谓需要计算汽车在某个时刻的“瞬时速度”,也就是计算函数s对时间t在一个点上的导数。
从以上的介绍我们明白了,微分的方法可用来求变量的导数,计算函数的增长率、坡度、速度等。积分又有何用途呢?积分实际上是微分的逆运算,也就是说,从山坡的坡度反过来计算山坡的高度。或者说,知道汽车在所有点的瞬时速度,反过来计算汽车行驶的距离时,就需要用到积分(图1.3)。对简单函数,比如图1.3(a)所示的匀速运动,已知速度求距离很简单,只需要将速度乘时间即可,对应于图1.3(a)中阴影矩形的面积。然而,如果速度随时间不停变化,如图1.3(b)所示的变速运动,这时候需要计算面积的图形形状就不是简单的矩形了。那么,应该如何来计算一个任意形状的图形面积呢?积分的思想就是把这个图形分成n个狭窄的、宽度为Δx的长条,然后把所有长条的面积加起来,得到Sn。当这些长条的宽度Δx趋近于“无限小”时,Sn趋近的数值就等于曲线下形成的图形的面积,也就是速度函数的积分值,即距离。
图1.3 匀速运动和变速运动时的求积分运算
这种将变量的变化趋于“无限小”的想法,也就是所谓的“极限”概念,是微积分的基本思想。现在我们说起“极限”来,好像并不难理解。但是,从产生这种最初的极限思想开始,又将其发展概括,最后整理归纳为数学语言,人类每一步走过来,都历经了漫长的历史过程。下一节,笔者便带你简单地回顾极限概念的发展历史。
2. 阿基里斯能追上乌龟吗?
极限这个字眼激发我们无限的想象,首先让我们联想到的是人们常常说的一句话:“挑战极限。”不过,在数学上,极限有它独特的含义,表示的是一种数学量无限趋近某个固定数值。极限思想的萌芽阶段可以上溯到两千多年前。希腊哲学家芝诺(Zeno of Elea,公元前490~前430年)曾经提出一个著名的阿基里斯悖论,这就是古希腊极限萌芽意识的典型体现。
阿基里斯是古希腊神话中善跑的英雄人物,参与了特洛伊战争,被称为“希腊第一勇士”。假设他跑步的速度为乌龟的10倍,比如说,阿基里斯每秒钟跑10m,乌龟每秒钟跑1m。出发时,乌龟在他前面100m处。按照我们每个人都具备的常识,阿基里斯很快就能追上并超过乌龟。我们可以简单地计算一下20s之后阿基里斯和乌龟在哪里?20s之后,阿基里斯跑到了离他出发点200m的地方,而乌龟呢,只在离它自己出发点的20m之处,也就是距阿基里斯出发点的120m之处,阿基里斯显然早就超过了它(图1.4)。
但是,从古至今的哲学家们都喜欢狡辩,芝诺说:“不对,阿基里斯永远都赶不上乌龟!”为什么呢?芝诺说,你看,开始的时候,乌龟超过阿基里斯100m,当阿基里斯跑了100m到了乌龟开始的位置时,乌龟已经向前爬了10m,这时候,乌龟超前阿基里斯10m;然后,我们就可以一直这样说下去:当阿基里斯又跑了10m后乌龟超前1米;下一时刻,乌龟超前0.1m;再下一刻,乌龟超前0.01m, 0.001m, 0.0001m 不管这个数值变得多么小,乌龟永远在阿基里斯前面。所以,阿基里斯不可能追上乌龟。
正如柏拉图所言,芝诺编出这样的悖论,或许是兴之所至而开的小玩笑。芝诺当然知道阿基里斯能够赶上乌龟,但他的狡辩听起来也似乎颇有道理,怎样才能反驳芝诺的悖论呢?
再仔细分析一下这个问题。将阿基里斯开始的位置设为0点,那时乌龟在阿基里斯前面100m,位置=100m。我们可以计算一下在比赛开始(100/9)s之后,阿基里斯及乌龟的位置。阿基里斯跑了(1000/9)m,乌龟跑了(100/9)m,加上原来的100m,乌龟所在的位置=(100/9+100)m=(1000/9)m,与阿基里斯在同一个位置,说明在(100/9)s的时候阿基里斯追上了乌龟。但是,按照悖论的逻辑,将这11s+(1/9)s的时间间隔无限细分,给我们一种好像这段时间永远也过不完的印象。就好比说,你有1t的时间,过了一半,还有(1/2)t;又过了一半,还有(1/4)t;又过了一半,你还有(1/8)t, (1/16)t,(1/32)t 一直下去,好像这后面的半小时永远也过不完了,这当然与实际情况不符。事实上,无论你将这后面的半小时分
……